913 research outputs found

    uvbyCa H beta CCD Photometry of Clusters. VII. The Intermediate-Age Anticenter Cluster Melotte 71

    Full text link
    CCD photometry on the intermediate-band uvbyCa H beta system is presented for the anticenter, intermediate-age open cluster, Melotte 71. Restricting the data to probable single members of the cluster using the color-magnitude diagram and the photometric indices alone generates a sample of 48 F dwarfs on the unevolved main sequence. The average E(b-y) = 0.148 +/- 0.003 (s.e.m.) or E(B-V) = 0.202 +/- 0.004 (s.e.m.), where the errors refer to internal errors alone. With this reddening, [Fe/H] is derived from both m1 and hk, using H beta and b-y as the temperature index, with excellent agreement among the four approaches and a final weighted average of [Fe/H] = -0.17 +/- 0.02 (s.e.m.) for the cluster, on a scale where the Hyades has [Fe/H] = +0.12. When adjusted for the higher reddening estimate, the previous metallicity estimates from Washington photometry and from spectroscopy are now in agreement with the intermediate-band result. From comparisons to isochrones of appropriate metallicity, the cluster age and distance are determined as 0.9 +/- 0.1 Gyr and (m-M) = 12.2 +/- 0.1 or (m-M)_0 = 11.6 +/- 0.1. At this distance from the sun, Mel 71 has a galactocentric distance of 10.0 kpc on a scale where the sun is 8.5 kpc from the galactic center. Based upon its age, distance, and elemental abundances, Mel 71 appears to be a less populous analog to NGC 3960.Comment: Accepted for Astronomical Journal. 38 page latex file includes 11 figures and short version of data table. Full table will appear in online AJ or may be requested from author

    Observing the Sun with the Atacama Large Millimeter-submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    Get PDF
    The Atacama Large Millimeter-submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that utilizes the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions we derive quiet-Sun values at disk center of 7300 K at lambda=3 mm and 5900 K at lambda=1.3 mm. These values have statistical uncertainties of order 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of order 25 arcsec, the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range.Comment: Solar Physics, accepted: 24 pages, 13 figure

    Observing the Sun with Atacama Large Millimeter/submillimeter Array (ALMA): High Resolution Interferometric Imaging

    Get PDF
    Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low- contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.Comment: 22 pages, 12 figures, accepted for publication in Solar Physic

    First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index (α\alpha), which ranges from α∼2.0\alpha\sim2.0 in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion around a ~1.3 solar mass star, although complicated by absorption at low blue-shifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.Comment: 11 pages, 5 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter

    Adolescents' perspectives on a school-based physical activity intervention: A mixed method study.

    Get PDF
    Purpose:To examine adolescent experiences and perspectives of the GoActive intervention (ISRCTN31583496) using mixed methods process evaluation to determine satisfaction with intervention components and interpret adolescents' experiences of the intervention process in order to provide insights for future intervention design. Methods:Participants (n = 1542; 13.2 ±  0.4 years, mean ± SD) provided questionnaire data at baseline (shyness, activity level) and post-intervention (intervention acceptability, satisfaction with components). Between-group differences (boys vs. girls and shy/inactive vs. others) were tested with linear regression models, accounting for school clustering. Data from 16 individual interviews (shy/inactive) and 11 focus groups with 48 participants (mean = 4; range 2-7) were thematically coded. Qualitative and quantitative data were merged in an integrative mixed methods convergence matrix, which denoted convergence and dissonance across datasets. Results:Effect sizes for quantitative results were small and may not represent substantial between-group differences. Boys (vs. girls) preferred class-based sessions (β = 0.2, 95% confidence interval (CI): 0.1-0.3); qualitative data suggested that this was because boys preferred competition, which was supported quantitatively (β = 0.2, 95%CI: 0.1-0.3). Shy/inactive students did not enjoy the competition (β = -0.3, 95%CI: -0.5 to -0.1). Boys enjoyed trying new activities more (β = 0.1, 95%CI: 0.1-0.2); qualitative data indicated a desire to try new activities across all subgroups but identified barriers to choosing unfamiliar activities with self-imposed choice restriction leading to boredom. Qualitative data highlighted critique of mentorship; adolescents liked the idea, but older mentors did not meet expectations. Conclusion:We interpreted adolescent perspectives of intervention components and implementation to provide insights into future complex interventions aimed at increasing young people's physical activity in school-based settings. The intervention component mentorship was liked in principle, but implementation issues undesirably impacted satisfaction; competition was disliked by girls and shy/inactive students. The results highlight the importance of considering gender differences in preference of competition and extensive mentorship training

    Proplyds and Massive Disks in the Orion Nebula Cluster Imaged with CARMA and SMA

    Get PDF
    [Abridged] We imaged a 2' x 2' region of the Orion Nebula cluster in 1.3 mm wavelength continuum emission with the recently commissioned Combined Array for Research in Millimeter Astronomy (CARMA) and with the Submillimeter Array (SMA). Our mosaics include >250 known near-IR cluster members, of which 36 are so-called "proplyds" that have been imaged previously with the Hubble Space Telescope. We detected 40 sources in 1 mm continuum emission, and several of them are spatially resolved with our observations. Dust masses inferred for detected sources range from 0.01 to 0.5 Msun, and the average disk mass for undetected sources is estimated to be ~0.001 Msun, approximately an order of magnitude smaller than the minimum mass solar nebula. Most stars in the ONC thus do not appear to currently possess sufficient mass in small dust grains to form Jupiter-mass (or larger) planets. Comparison with previous results for younger and older regions indicates that massive disks evolve significantly on ~Myr timescales. We also show that the percentage of stars in Orion surrounded by disks more massive than ~0.01 Msun is substantially lower than in Taurus, indicating that environment has an impact on the disk mass distribution. Finally, we explore potential correlations of disk mass with stellar mass and location within the cluster.Comment: 45 pages, 11 figures. Accepted for publication in Ap

    Chemistry in Disks. II. -- Poor molecular content of the AB Aur disk

    Full text link
    We study the molecular content and chemistry of a circumstellar disk surrounding the Herbig Ae star AB Aur at (sub-)millimeter wavelengths. Our aim is to reconstruct the chemical history and composition of the AB Aur disk and to compare it with disks around low-mass, cooler T Tauri stars. We observe the AB Aur disk with the IRAM Plateau de Bure Interferometer in the C- and D- configurations in rotational lines of CS, HCN, C2H, CH3OH, HCO+, and CO isotopes. Using an iterative minimization technique, observed columns densities and abundances are derived. These values are further compared with results of an advanced chemical model that is based on a steady-state flared disk structure with a vertical temperature gradient, and gas-grain chemical network with surface reactions. We firmly detect HCO+ in the 1--0 transition, tentatively detect HCN, and do not detect CS, C2H, and CH3OH. The observed HCO+ and 13CO column densities as well as the upper limits to the column densities of HCN, CS, C2H, and CH3OH are in good agreement with modeling results and those from previous studies. The AB Aur disk possesses more CO, but is less abundant in other molecular species compared to the DM Tau disk. This is primarily caused by intense UV irradiation from the central Herbig A0 star, which results in a hotter disk where CO freeze out does not occur and thus surface formation of complex CO-bearing molecules might be inhibited.Comment: Accepted by A&

    An Overview of the 2014 ALMA Long Baseline Campaign

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the Astrophysical Journal Letters; this version with small changes to affiliation
    • …
    corecore